Unmanned Autonomous Marine Vehicles Simulators

ENSTA Bretagne

Name of the hosting institution in France	ENSTA Bretagne

Name of the host laboratory / research team | Lab-STICC UMR 6285

Address | ENSTA Bretagne Lab-STICC 2 rue François Verny 29800 Brest Cedex 9

Web | www.labsticc.fr

Name of the supervisor | Benoît Clement

Function | Deputy Head of Lab-STICC UMR CNRS 6285

Email | benoît.clement@ensta-bretagne.fr

Phone number | +33 (0)2 98 34 89 70

Internship offer

Topic of the internship (title): Unmanned Autonomous Marine Vehicles Simulators

Proposed dates of the internship: Start 2021-01-04, End 2021-05-31

The supervisors have indicated the dates proposed are flexible and are able to be postponed subject to COVID-19 border closures.

Scientific and academic objectives of the internship (detailed description of the internship content, work expected from the intern and expected outcomes):

The use of unmanned autonomous marine vehicles for defence, scientific and commercial applications has grown significantly over recent years with the result that vehicles are becoming increasingly sophisticated and capable of making complex decisions without humans in the loop. Machine learning algorithms are used to implement intelligent processing of sensory information and achieve safe behaviour of autonomous vehicles under known and previously unknown situations, however, the processes by which decisions are reached are difficult to unravel and therefore trust. Testing new algorithms on a vehicle may prove costly and potentially dangerous should the algorithm fail or not behave as predicted. In the case of autonomous marine vehicles, a failure in the vehicle control, planning and guidance systems may result in an unrecoverable vehicle, and as a consequence, considerable financial losses. Simulation is an important research and development tool that can be used to test newly devised control algorithms on a vehicle. Simulation enables algorithms and control schemes to be evaluated in a virtual environment thus reducing potential risks associated with real-world experimentation. Existing simulators such as Gazebo are steadily gaining acceptance in the research community and are being continually developed to enhance the range of platform, actuators and sensor and environment models that can be simulated. Gazebo incorporates physical fidelity to emulate the effects of forces and disturbances within the environment, as well as visual fidelity to emulate textures, illumination and acoustic reflection properties. Gazebo is also tightly integrated with the Robotic Operating System (ROS) enabling algorithms to be tested using the same computational platform as that on the vehicle. Various Gazebo based marine vehicle simulators exist. For autonomous underwater vehicles (AUVs), the uuv simulator package containing existing models of AUVs, is particularly appropriate. It also incorporates customizable models of seabed terrains, and ocean wave and current disturbances. Similarly for unmanned surface vehicles (USVs), the usv_sim_gazebo simulator, contains various models of boats, wind, wave and current disturbances, and terrain. Neither of these simulators, however, include simulation of the hydrodynamic forces, such as waves or ocean currents acting on the vehicle. Any simulation is only in a visual sense and lacks the real behaviour of ocean waves. It is up to the user to include models of underwater vehicle physics in a control script, or to extend the simulator itself. Similarly, the visual fidelity found in Gazebo is relatively simple, however more realistic water motion simulations, terrains and vehicles can be created sing the Blender Game Engine, and the models then incorporated into Gazebo. The main work of these internship is to develop a method and user guide to include new AUD and USV in the existing simulators. Development of Blender models of Naval Group’s, ENSTA Bretagne and Flinders University’s AUVs and USVs and then incorporating these into Gazebo for testing within uuv simulator or usv_sim_gazebo, as appropriate. These models should incorporate the same suite of sensors and thusters/actuators as present on the vehicles (these can be customised from existing tools within Gazebo).

Name of industrial partner | Naval Group

Role of the industrial partner in the internship project | Naval Group, Flinders University and ENSTA Bretagne are collaborating on the development of control and guidance algorithms for ASVs and AUVs. The three groups have a range of surface and underwater vehicles and have complementary expertise in maritime autonomy. The development of high-fidelity simulators that can incorporate models of these vehicles, and simulate the hydrodynamic interaction between waves/current and the platforms would be desirable to support the research collaboration between the partners.

Main contact at the French industrial partner | Estelle CHAUVEAU

Email of contact at French industrial partner | estelle.chauveau@naval-group.com

Name of the Australian partner institution | Flinders University

Name of lab/department/team involved in the collaboration at the Australian partner institution | Centre for Maritime Engineering

Function of the main contact in the Australian partner institution | Professor

Email address of the main contact in the Australian partner institution | karl.sammut@flinders.edu.au

Outside of this ongoing collaboration, will applications coming from students of other eligible Australian universities be considered by the hosting institution in France? | Yes

Expected profile of applicant

Level of study | Master, Bachelor with Honours

Required qualities, knowledge and skills | Required: Programming in Matlab and C++, Control Systems Desirable: programming in Python and ROS

Discipline | Physics and/or Robotics